Ephemeral elliptic curve Diffie-Hellman key agreement in Java

Update 2 (17th May, 2017): I’ve written some notes on correctly validating ECDH public keys

Update (20th April, 2017): I’ve noticed that this article gets by far the most daily hits on my blog. This worries me that people are using this code as a template for building real ECDHE key agreement, when it was only intended as a guide to the Java API. There are a lot of details in safe construction of such a protocol. More secure alternatives than to trying to roll this yourself include the various complete protocols listed at the end of the article. With that said, we’ll get back to the original article:

Diffie-Hellman key agreement (DH) is a way for two parties to agree on a symmetric secret key without explicitly communicating that secret key. As such, it provides a way for the parties to negotiate a shared AES cipher key or HMAC shared secret over a potentially insecure channel. It does not by itself provide authentication, however, so it is vulnerable to man-in-the-middle attacks without additional measures. There are several ways to provide these additional measures (e.g. signing the ephemeral public keys using a CA-issued certificate, or using a protocol like OTR), but we will not discuss them here, or go into the details of how the key agreement works. Java provides support out-of-the-box for both original discrete log DH and elliptic curve (ECDH) key agreement protocols, although the latter may not be supported on all JREs. ECDH should be preferred for any new applications as it provides significantly improved security for reasonable key sizes.

elliptic curve
An elliptic curve defined by y2 = x3 – 2x + 2
As is often the case in Java, the use of these classes can be a bit convoluted. Here we demonstrate simple Java code for ECDH key agreement on the command line. We only demonstrate ephemeral key agreement, in which the two parties generate unique public/private key pairs at the start of the protocol and throw them away once the shared secret has been negotiated. This can form the basis for perfect forward secrecy.

WARNING: the code here is not a complete security protocol and should be used for reference on the Java API only.

Continue reading “Ephemeral elliptic curve Diffie-Hellman key agreement in Java”